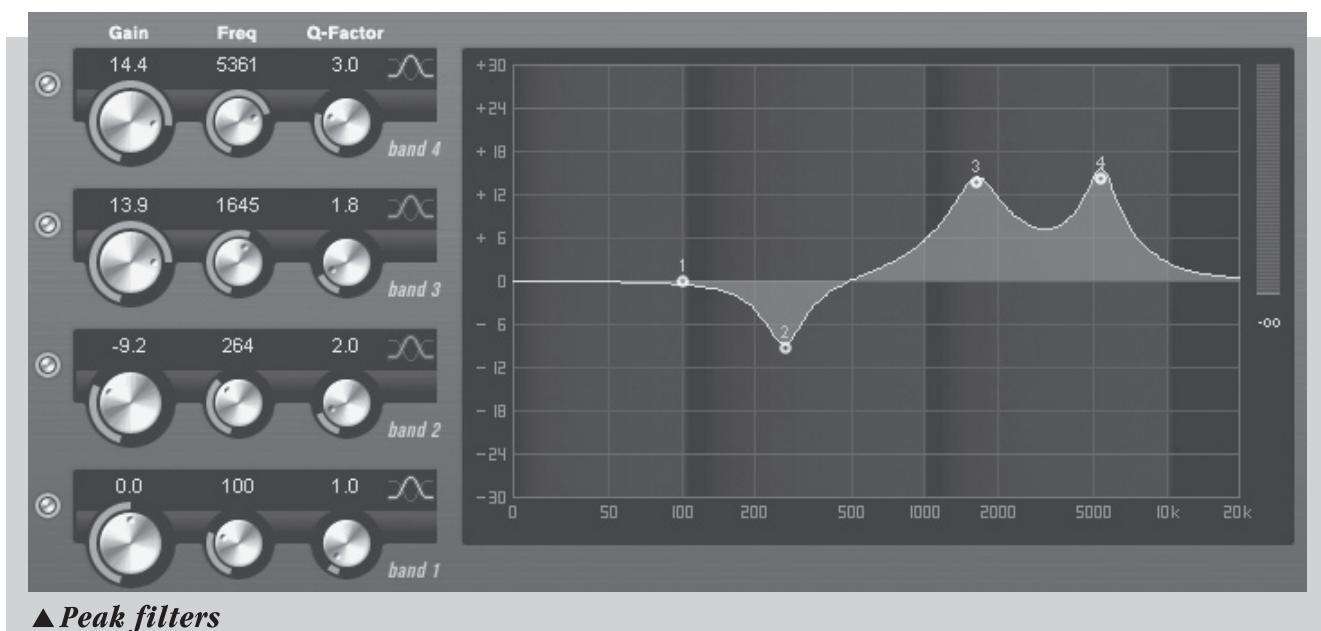


CONTENTS

CHAPTER 1. IF IT SOUNDS GOOD, IT IS GOOD	3
CHAPTER 2. YOUR LISTENING ENVIRONMENT	4
Acoustic Treatments.	4
Monitoring.	5
Mixing Platform	6
Getting Used to Your Room	6
CHAPTER 3. EQUALIZATION	7
<i>What Is an EQ, and Why Would You Use One?</i>	7
Frequency and Pitch.	8
Types of EQs and Their Controls.	9
Peak Filters.	9
Shelving EQs.	11
High- and Lowpass Filters	12
EQ and Ear Training	13
EQs In Use.	14
Choosing an EQ.	15
Subtractive Vs. Additive EQ	16
EQing the Low End.	16
EQing the Low Mids	19
EQing the Mids and High Mids	20
EQing the High End	21
● Quick Guide: Instrument Frequency Ranges	21
CHAPTER 4. DYNAMICS PROCESSORS	22
Compressors.	22
<i>What Are Compressors, and Why Would You Use One?</i>	22
Types of Compressors	22
The Controls	23
Compression vs. Limiting	24
Multiband Compressors	25
Sidechaining	26
Parallel Compression	27
Compressors as Tone Devices	30
Is Louder Better?	31
Compressors In Use	32
Choosing a Compressor	34
The Sound of Compression	34
● QuikGuide: Converting Milliseconds to Beats per Minute	35
Compressing Instruments with a Wide Dynamic Range	36
Compressing Instruments with a Small Dynamic Range	39
Compressing Bass	40
Compressing Vocals	41
De-essing	44
Bus Compression	48
Other Creative Compression	50
Expanders	54
<i>What Are Expanders, and Why Would You Use One?</i>	54
The Controls	55
Expanders In Use	55
Noise Gates	56
<i>What Are Noise Gates, and Why Would You Use One?</i>	56
The Controls	57
Noise Gates In Use	57
CHAPTER 5. SPACE: REVERBS, DELAYS ETC.	58
Reverb	58
<i>What Is Reverb, and Why Do I Need It?</i>	58
The Controls	59
Types of Reverbs	60
Reverbs In Use	60
Choosing a Reverb	62
Incorporating EQ and Other Processing	63
Which Instruments Should Have Reverb On Them?	65
Delay	65
<i>What Is Delay, and Why Do I Need It?</i>	65
Types Of Delay Processors	65
The Controls	66
● QuikGuide: Note-to-BPM Conversion	66
Delay In Use	67
CHAPTER 6. OTHER EFFECTS	71
Modulation Effects	71
Distortion	72
Stereo Image Enhancement	73
CHAPTER 7. BEFORE YOU START YOUR MIX	74
Editing	74
Vocal Tuning	74
Sound Replacement	76
Some Thoughts On Panning	78
CHAPTER 8. KEEPING IT MANAGEABLE!	81
Getting Organized	81
Setting Up the Mixer	82
Groups, Buses and FX Returns	83
Additional Mix Preparations	85
CHAPTER 9. THE MIX!	87
Deciding On an Approach	87
North and South	89
Low Frequencies	90
Mid- and High-Range Frequencies	91
Build the Foundation First	91
Start With the Star	92
All In	92
Automation	92
To Sum the Mix	95
INDEX	96

Types of EQs and Their Controls

Equalization filters come in three types: peak, shelving and pass filters (high- and lowpass). EQs can use passive or active electronic elements, digital algorithms, or even vacuum tubes to shape the tone of the source audio signal. (Contrary to what you might think, vacuum tubes used for audio purposes do not create a sucking sound like a vacuum cleaner.) Digital EQs use programming algorithms instead of electronic elements to alter the signal. Both analog and digital EQs generally use the same set of controls to alter the frequency content.


Peak Filters

Peak filters are the most flexible and probably the most often-used filter types. They have three variables or controls: frequency, Q and cut/boost.

The frequency control, as the name suggests, allows you to select the center frequency of the peak filter. Peak filters operate using a bell curve, in which equalization is heaviest at a center frequency that falls at the top, or peak, of the bell curve. This process allows for smooth operation across a wide range of frequencies.

The Q control adjusts the width of the bell curve. By changing the Q, you can adjust the width of the frequency range around the chosen center frequency. A higher Q setting will affect a narrow bandwidth around the center frequency. A lower Q setting will affect a wider bandwidth around the center frequency. See examples on page 10.

The cut/boost or gain control determines the level of the selected frequencies. A cut, or gain reduction, will make the frequencies softer; a boost, or gain increase, will make the frequency selection louder.

