Synthesis Lectures on Mathematics & Statistics

Series Editor

Steven G. Krantz, Department of Mathematics, Washington University, Saint Louis, MO, USA

This series includes titles in applied mathematics and statistics for cross-disciplinary STEM professionals, educators, researchers, and students. The series focuses on new and traditional techniques to develop mathematical knowledge and skills, an understanding of core mathematical reasoning, and the ability to utilize data in specific applications.

Arturo Portnoy

The Mathematics of Music and Art

Arturo Portnoy Department of Mathematical Sciences University of Puerto Rico at Mayagüez Mayagüez, Puerto Rico

ISSN 1938-1743 ISSN 1938-1751 (electronic) Synthesis Lectures on Mathematics & Statistics ISBN 978-3-031-34439-8 ISBN 978-3-031-34440-4 (eBook) https://doi.org/10.1007/978-3-031-34440-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
Gottfried Leibniz

To my wife, Helen, and my daughters, Ana and Mati. You are the rhythm, melody, and harmony in my life.

Preface

My grandparents owned a piano. As a child, every Sunday before having lunch with them, I would sit at the piano and play around with it, exploring. Very soon I started to notice patterns in melody and harmony; playing certain keys together would sound "good," others would not. Later I would learn about chords and simple progressions. These pattern-finding adventures would arise again and again as I started to become proficient and interested in mathematics. To this day, I enjoy both music and mathematics and continuously find that my interest in one subject feeds the other.

Stories about the relationship between music and mathematics are part of popular culture. How many times have we not heard that children exposed to classical music from an early age develop their analytical capacity, their geometric and mathematical skills, and that it has the effect of increasing the famous IQ? Conversely: the cases of famous music-loving scientists and mathematicians, such as Albert Einstein, Richard Courant, and many others, are notable. In this book, we want to explore more specifically and carefully the nature of this relationship, using mathematical tools to explain aspects of music theory.

Our efforts will take us through 2600 years of Western history, mathematics, science, art, and music. Pythagoras had his famous epiphany when he discovered the relationship between harmony and rational numbers: "All is number," he famously proclaimed. We will study this and other noteworthy aspects of this multifaceted relationship. This document is by no means definitive; the main purpose of it is not to document exhaustively but to try to transmit to the reader the enthusiasm that many have felt throughout history when they invented or discovered results, relationships, and concepts of extraordinary beauty, power, and simplicity.

Simple is the keyword here. The aim is to reach a wide audience. To do so, we must keep things light without trivializing the discussion. This is a delicate balance which we hope to maintain. If many readers can achieve small epiphanies of understanding and connecting, then the objective of this book will have been achieved.

It is suggested that all the proposed activities be carried out. Reading and accepting that a phenomenon occurs are not the same as witnessing it personally, and some of the activities try precisely to make the reader an eyewitness of these phenomena. Others

x Preface

are activities intended to reinforce newly presented concepts, ideas, and techniques. A webpage pointing to interactive activities for each chapter is available at https://themathof.musicandart.weebly.com/.

Everyone enjoys music. In fact, it shares with mathematics the nickname of universal language. We will see how, without mathematics, music as we know it could not have been developed. We also hope to exploit the relationship between music and mathematics to motivate and encourage the study of the queen of sciences with music. The language of music is deciphered by the language of mathematics.

This book is not all about music, and it's not all about math, but mainly about how the author, a professional mathematician and an amateur musician, views music through the eyes of mathematics. It is a very personal perspective.

It is also not really about the art of music. Art is in the details, in the particulars, not the generalities or universal patterns. Trained mathematicians with a scientific viewpoint look for generalities, patterns. These are undeniably important and fundamental to analyze and dissect music but are most likely not the source or the spark of beautiful songs and melodies. When one dissects, one kills; that is the price of understanding. Trying to use the ideas and concepts explored in this book to create new and beautiful art is a whole other matter which will not be explored in detail. The muses, creativity, will remain mysterious. I admit that when I sit down at the keyboard to play, it is tempting to try to turn off the rational and analytical side and tune in the emotional and sentimental. It is not easy to merge them both consciously. In art, great beauty implies structure, but structure does not imply beauty: just like knowing how to write a grammatically correct sentence does not imply breathtaking, powerful writing.

It should be noted that the focus of this document is Western or Eurocentric history and culture, which has been heavily influenced by African traditions and culture, particularly in music. Asian music developed quite independently and although there are many common points, this book will center on the Western or European experience. This is not a choice, but rather a result of the author's limitations. I hope that this personal and narrow view of the art form that most deeply affects and enchants humanity, music, will resonate with some, hopefully many.

These notes were written in preparation for and as part of an introductory interdisciplinary course: INTD3990 Music: Art, Science, and Mathematics, offered for the second time at the University of Puerto Rico at Mayagüez during the second semester of 2018–2019 in conjunction with two colleagues: Dana Collins, musicologist, and Héctor Jiménez, physicist. We thought about and planned the course for a couple of years; it had no prerequisites and was therefore open to a general audience, and consequently, it did not seek depth in any particular topic. The idea was to give the students a broad vision and achieve the integration of different and apparently disconnected subjects, with the aim of rounding

Preface xi

out their general culture and education. We did, however, touch upon serious mathematics, music, and physics, which was presented in an informal and intuitive manner. Again, it was our hope that the material would be accessible to a wide audience.

Mayagüez, Puerto Rico 2023

Arturo Portnoy arturo.portnoy1@upr.edu

Introduction: Let's Start at the Beginning...

¿How old are music and mathematics? ¿When did we begin to create and understand these two disciplines? It turns out that there is archeological evidence that these two disciplines are as old as humanity. We have been counting and thinking about numbers, and making music, since the dawn of times.

Let's start with music. One of the oldest known instruments is a cave bear femur bone flute found in Slovenia, called the Divje flute. Its age is estimated at 50,000 to 60,000 years (Fig. 1).

Fig. 1 Divje flute, attribution: dalbera from Paris, France, CC BY 2.0 https://creativecomm ons.org/licenses/by/2.0, via Wikimedia Commons, Page URL: https://commons.wikimedia.org/wiki/File:Fl%C3% BBte_pal%C3%A9olithique_(mus%C3%A9e_national_de_Slov%C3%A9nie,_Ljubljana)_(9420310527).jpg

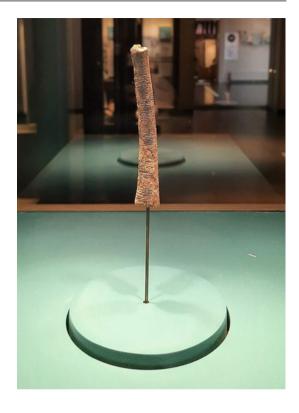
Fig. 2 Geisenklösterle cave flute, attribution: José-Manuel Benito Álvarez, CC BY-SA 2.5 https://creativecommons.org/licenses/by-sa/2.5, via Wikimedia Commons, Page URL: https://commons.wikimedia.org/wiki/File:Flauta_paleol%C3%ADtica.jpg

Other bone flutes have been found in Germany (Geisenklösterle Cave flutes) with an estimated age of 35,000 to 43,000 years (Fig. 2).

Let's note that the origins of agriculture and the first large settlements or cities it allowed are no more than 12,000 years old. So, these instruments are the work of our nomad, cave dwelling, very primitive ancestors. And it is no coincidence that these first instruments are carved out of bones, the same bones that our ancestors fed on, sucked the marrow out of to get the fat and nutrients that allowed them to grow large brains, scavenging them from the leftovers of the great animal hunters that roamed the land. It is both humbling and uplifting to think of these very primitive beings, scavenging and feeding from these bones and scraps, and yet having the mindfulness of recognizing their musical potential and the initiative to build toys, instruments, to play music, to enjoy. It says a lot about our species, and it fills me with wonder, optimism, and amazement to see ourselves as these very curious, smart, creative and playful creatures, right from our humble beginnings.

There is also another detail: bone artifacts last. Even earlier instruments made from wood or leather, for example, may have disappeared. But it is not hard to imagine our ancestors, sitting around the fire at night, clapping, stomping, hitting objects, percussions, to keep a steady beat while they sang stories, stories of the hunt, of their ancestors, of the heavens and the gods. I would imagine that percussions preceded these ancient flutes. And let's remember that our own bodies are instruments, our beating hearts, our voices, our whistling mouths, our palms, and feet. Language and music are one and the same, when we speak, we sing. The tone of our voice says as much as the words we speak. So, it is natural to speculate that music is much older than these already ancient artifacts (Fig. 3).

Now let's talk about mathematics. There are two notable archeological findings, the Lebombo bone and the Ishango bone, ages estimated at 43,000 years old and 20,000 to 22,000 years old, respectively, which are notched, as if keeping count. Some speculate that


Fig. 3 Sitting around the fire, attribution: Hynek Janáč, CC0, via Wikimedia Commons, Page URL: https://commons.wikimedia.org/wiki/File:People_sitting_around_a_camp_fire.jpg

the notches represent days in a lunar phase counting calendar, there are also speculations regarding the understanding of prime numbers, given groupings in the notches. In any case, we see clear evidence of humans counting, keeping records of said counts, and even understanding the divisibility properties of natural numbers. All of this happened tens of thousands of years ago. And interestingly, the artifacts are bone artifacts again, these ancestral bones that fed our bodies and our imaginations (Fig. 4).

Let's now speculate about the relationship between these findings. Can we make music without counting? Can we keep a beat, divide time, without mathematics, without numbers? In fact, the answer to these questions is an emphatic no. Even the simplest chanting, accompanied by a steady beat, implies keeping time; counting, preserving certain patterns that allow for prediction and preparation of what's to come, are absolutely necessary for practical and aesthetic reasons. So, the implication is that these two disciplines, music, and mathematics, must have initiated and developed hand in hand. As we shall see, this has continued to be the case throughout human history.

Fig. 4 Ishango bone, attribution: Joeykentin, CC BY-SA 4.0 https://creativec ommons.org/licenses/by-sa/ 4.0, via Wikimedia Commons, Page URL: https://commons.wikimedia.org/wiki/File:Ish ango_bone.jpg

Activity 1

Watch the videos on the activities page, which talk about these ancient bone artifacts that represent humankind's beginnings in music and mathematics.

Activity 2

Visit the last link on the Additional Supplementary Materials section in the activities webpage (See Footnote 1), a webpage published by the American Mathematical Society with resources related to mathematics and music. Watch the PBS video titled *Majesty of Music and Math* (the first video you will find there), which will give you a truly wonderful introduction to topics we will discuss in the book.

¹ The activities and explorations can be found at https://themathofmusicandart.weebly.com/.

Contents

1	Prel	liminaries	1
	1.1	Rational and Irrational Numbers	1
	1.2	Logarithms and Exponentials	4
		1.2.1 Exponential Function	7
		1.2.2 Exponential Equations	8
		1.2.3 Logarithmic Function	9
	1.3	Pitch, the Musical Scale, and the Piano	11
	1.4	Musical Notation, Rhythm	12
	1.5	Consonance and Dissonance	14
	1.6	Key, Melody, Chords, and Harmony	16
2	The	Pigeonhole Principle	19
	2.1	Pigeons and Pigeonholes	19
	2.2	Rational Approximations	22
3	Continued Fractions		
	3.1	Finite Continued Fractions	27
	3.2	Infinite Continued Fractions	28
	3.3	The Golden Ratio	29
	3.4	Convergents	33
4	Pytl	hagoras and Music	35
	4.1	The Monochord	35
	4.2	The Circle of Fifths and the Musical Scale	41
	4.3	Why Does the Occidental Chromatic Scale Have 12 Notes?	44
5	Tem	pperaments of the Scale	49
	5.1	The Pythagorean Scale	51
	5.2	Just Intonation	51
	5.3	The Equally Tempered Scale	56
	5.4	Comparison	56
	5.5	Project	60

xviii Contents

6	Patt	erns in Music	61
	6.1	Rhythmic Patterns	62
	6.2	Patterns in Melody and Harmony	65
		6.2.1 The Diatonic Major Scale	65
		6.2.2 The Relative Minor Scale	66
		6.2.3 Triads and Chords	67
		6.2.4 Chord Inversions	68
		6.2.5 Modular Arithmetic in the Scale	69
	6.3	Patterns in Musical Composition	69
		6.3.1 Transposition	77
		6.3.2 Composition	78
	6.4	Symmetry in Harmony	80
	6.5	Symmetry in Composition	81
	6.6	Project	82
7	Ana	lysis and Synthesis of Music	83
	7.1	Harmonic Oscillations	83
	7.2	Fourier Series	85
	7.3	Analysis of Sound	87
	7.4	Sound Synthesis	92
	7.5	The Acoustic Envelope	93
8	Beat	ts, Resonance, and Tuning	97
	8.1	Beats	97
	8.2	Resonance	99
	8.3	Tuning	99
9	Digi	tal Music and Information	101
	9.1	Binary Representation of Numbers	101
	9.2	Analog Versus Digital	102
	9.3	Digitalization of Sound and Music	103
10	Last	Thoughts	111
A	11	- A. Madhamadal I. Ladan	115
		x A: Mathematical Induction	115
Ap	pendi	x B: ¿Do Convergents Actually Converge?	117
Apj	pendi	x C: Fibonacci and the Golden Ratio	121
Fui	ther	Reading	125
Ind	ex		127

List of Figures

Fig. 1.1	The Real Number System, Attribution: made by the author	
	in Google Slides	4
Fig. 1.2	Piano profile and an exponential function, modified by the author	
	using an image created with the Desmos Graphing Calculator,	
	used with permission from Desmos Studio PBC (right image),	
	and the image of a piano with a red curve added (left image).	
	Attribution: The original uploader was Opus33 at English	
	Wikipedia., CC BY-SA 3.0 http://creativecommons.org/licenses/	
	by-sa/3.0/>, via Wikimedia Commons, Page URL: https://com	
	mons.wikimedia.org/wiki/File:FortepianoByMcNultyAfterWalter	
	1805.jpg	5
Fig. 1.3	Two Romanian pan flutes, Attribution: Alexander Kerschhofer	
	(alias Multimann), CC BY-SA 3.0 http://creativecommons.	
	org/licenses/by-sa/3.0/>, via Wikimedia Commons, Page URL:	
	https://commons.wikimedia.org/wiki/File:Panflute1.jpg	5
Fig. 1.4	Portative pipe organ, Attribution: No machine-readable author	
	provided. Tolanor assumed (based on copyright claims), Public	
	domain, via Wikimedia Commons, Page URL: https://commons.	
	wikimedia.org/wiki/File:Portativ.jpg	6
Fig. 1.5	A medieval European harp, Attribution: Ingersoll, Public domain,	
	via Wikimedia Commons, Page URL: https://commons.wikime	
	dia.org/wiki/File:Wartburg-Harfe.JPG	7
Fig. 1.6	Graphs of exponential functions with different bases, all	
	passing through point (0, 1). Note the horizontal graph which	
	corresponds to $y = 1^x$, Attribution: Graph images are created	
	with the Desmos Graphing Calculator, used with permission	
	from Desmos Studio PBC	8

xx List of Figures

Fig. 1.7	Graph of an exponential function and its inverse,	
	the corresponding logarithmic function, Attribution: Graph	
	images are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	9
Fig. 1.8	The piano keyboard, diatonic and chromatic scales, Attribution:	
	Tobias R.—Metoc, CC BY-SA 2.5 https://creativecommons.org/	
	licenses/by-sa/2.5>, via Wikimedia Commons, Page URL: https:/	
	/commons.wikimedia.org/wiki/File:Klaviatur-3-en.svg	11
Fig. 1.9	G-clef specifying middle G on the piano on second line	
Ü	from bottom to top and a white note on middle C, Attribution:	
	Created by Hyacinth (talk) 04:50, 2 June 2010 using Sibelius 5.,	
	Public domain, via Wikimedia Commons, Page URL: https://	
	commons.wikimedia.org/wiki/File:Middle_C.png	13
Fig. 1.10	An example of modern musical notation: Prelude, Op. 28, No.	
	7, by Frédéric Chopin, Attribution: en:User:Prof.rick, Public	
	domain, via Wikimedia Commons, Page URL: https://commons.	
	wikimedia.org/wiki/File:Chopin_Prelude_7.png	13
Fig. 1.11	Octave, Attribution: made by the author using Google Slides	15
Fig. 1.12	Perfect fifth, Attribution: made by the author using Google Slides	15
Fig. 1.13	Major seventh, Attribution: made by the author in Google Slides	16
Fig. 1.14	Minor second, Attribution: made by the author in Google Slides	16
Fig. 2.1	Peter Gustav Lejeune Dirichlet, Attribution: Unknown source,	
	Public domain, via Wikimedia Commons, Page URL: https://	
	commons.wikimedia.org/wiki/File:Peter_Gustav_Lejeune_Diri	
	chlet.jpg	20
Fig. 2.2	Pigeons in their pigeonholes, Attribution: No machine-readable	
	author provided. BenFrantzDale~commonswiki assumed (based	
	on copyright claims), CC BY-SA 3.0 https://creativecommons.	
	org/licenses/by-sa/3.0/>, via Wikimedia Commons, Page URL:	
	https://commons.wikimedia.org/wiki/File:Pigeons-in-holes.jpg	21
Fig. 2.3	The red lines represent the breaking of $[0,1]$ into $N=5$	
	pigeonholes, and the black lines represent the pigeons, that is,	
	$i\alpha - \lfloor i\alpha \rfloor$ for $i = 1, 2, 3, 4, 5$. Note that the 3rd pigeonhole	
	contains two pigeons, Attribution: Graph images are created	
	with the Desmos Graphing Calculator, used with permission	
	from Desmos Studio PBC	25
Fig. 2.4	$\pi = 3.1415926$, Attribution: GJ, Public domain,	
	via Wikimedia Commons, Page URL: https://commons.wikime	
	dia.org/wiki/File:Pi_pie2.jpg	26

List of Figures xxi

Fig. 3.1	Golden rectangle, where $\frac{a+b}{a} = \frac{a}{b}$, Attribution: Ahecht (Original); Pbroks13 (Derivative work), Public domain, via Wikimedia Commons, Page URL: https://commons.wikime	
	dia.org/wiki/File:SimilarGoldenRectangles.svg	30
Fig. 3.2	Vitruvian Man, by Leonardo DaVinci, Attribution: Leonardo da	
Ü	Vinci, Public domain, via Wikimedia Commons, Page URL:	
	https://commons.wikimedia.org/wiki/File:Da_Vinci_Vitruve_	
	Luc_Viatour.jpg	30
Fig. 3.3	Fibonacci spiral, which is a good approximation to a Golden	
U	spiral, Attribution: Romain, CC BY-SA 4.0 https://creativec	
	ommons.org/licenses/by-sa/4.0>, via Wikimedia Commons, Page	
	URL: https://commons.wikimedia.org/wiki/File:Fibonacci_Spiral.	
	svg	31
Fig. 4.1	Pythagoras, Attribution: Thomas Stanley, 1655, The history	
U	of philosophy, Public domain, via Wikimedia Commons, Page	
	URL: https://commons.wikimedia.org/wiki/File:Pythagoras_in_T	
	homas_Stanley_History_of_Philosophy.jpg	36
Fig. 4.2	Several monochords, sharing a single resonator table, Attribution:	
U	G Rosa, Public domain, via Wikimedia Commons, Page URL:	
	https://commons.wikimedia.org/wiki/File:Monocordiopitagoras20	
	060330.png	37
Fig. 4.3	Harmonic vibrations of a string, Attribution: Graph images	
	are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	38
Fig. 4.4	Resonant modes in an open column, Attribution: Graph	
	images are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	40
Fig. 4.5	Circle of fifths showing major and minor keys, Attribution: Just	
	plain Bill, CC BY-SA 3.0 http://creativecommons.org/licenses/	
	by-sa/3.0/>, via Wikimedia Commons, Page URL: https://com	
	mons.wikimedia.org/wiki/File:Circle_of_fifths_deluxe_4.svg	42
Fig. 4.6	Piano keyboard showing full chromatic scale, Attribution: made	
	by the author on Google Slides	43
Fig. 5.1	Johann Sebastian Bach (1685–1750), Attribution: Elias Gottlob	
	Haussmann, Public domain, via Wikimedia Commons, Page	
	URL: https://commons.wikimedia.org/wiki/File:Johann_Sebast	
	ian_Bach.jpg	5 0
Fig. 5.2	Just temperament or intonation, Attribution: made by the author	
	in Microsoft PowerPoint	55

xxii List of Figures

Fig. 5.3	Polar and Lissajous representations of all intervals in the Just intonation chromatic scale, Attribution: Graph images are created	
	with the Desmos Graphing Calculator, used with permission from Desmos Studio PBC	59
Fig. 6.1	Twinkle Twinkle Little Star, a traditional tune everyone knows,	
	is a good example to examine when starting out looking	
	for patterns. Note how almost every bar contains two black	
	notes and one white bass note, Attribution: made by the author	
	in Musescore	63
Fig. 6.2	One octave in the piano keyboard showing the C Major chord	
	in yellow, Attribution: made by the author in Google Slides	68
Fig. 6.3	Twinkle Twinkle Little Star again, now noting the Anglo notation	
	for accompanying chords on top of each bar: C, F, and G,	
	Attribution: made by the author in Musescore	70
Fig. 6.4	Greensleeves, an English folk song, in an arrangment using I	
	(C), IV (F), V (G), iii (Em), and vi (Am) as accompaniment	
	chords, Attribution: made by the author in Musescore	71
Fig. 6.5	Greensleeves an English folk song, now in an arrangment using I	
	(C), IV (F), V (G), III (E), and vi (Am) as accompaniment chords.	
	Note the change from iii (Em) to III (E) and the sharpened notes	
	or accidentals with respect to the previous version, Attribution:	
	made by the author in Musescore	72
Fig. 6.6	Silent Night, a classic Christmas song, note the time signature:	
	3/4. Also note that the same chords are used as accompaniment	
	as in previous examples: I (C), IV (F), V (G), Attribution: made	
	by the author in Musescore	73
Fig. 6.7	Happy Birthday To You, another well known song, with the same	
	time signature and accompanying chords as Silent Night,	
E' (0	Attribution: made by the author in Musescore	74
Fig. 6.8	Twinkle Twinkle Little Star, now analyzing its compositional	70
D:- 7.1	structure, Attribution: made by the author in Musescore	7 9
Fig. 7.1	Mass on a spring and mass on pendulum. Two examples	
	of simple harmonic motion, Attribution: Graph images	
	are created with the Desmos Graphing Calculator, used	84
Fig. 7.2	with permission from Desmos Studio PBC	04
Fig. 7.2	Original: José Luis Gálvez Vector: Josemontero9, CC	
	BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/ ,	
	via Wikimedia Commons, Page URL: https://commons.wikime	
	dia.org/wiki/File:OndaSenoidal.svg	84
	uia.org/wiki/1 nc.Ondascholdal.svg	04

List of Figures xxiii

Fig. 7.3	The harmonics of a vibrating string, Attribution:	
	Moodswingerscale.jpg: Y Landmanderivative work: W	
	axell (d), Public domain, via Wikimedia Commons, Page URL:	
	https://commons.wikimedia.org/wiki/File:Moodswingerscale.svg	85
Fig. 7.4	Superposition of the first five sinusoidal natural modes	
	or harmonics, Attribution: Graph images are created	
	with the Desmos Graphing Calculator, used with permission	
	from Desmos Studio PBC	86
Fig. 7.5	Fourier approximations to four functions, Attribution: Graph	
	images are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	88
Fig. 7.6	Triangular prism, separating white light into its spectrum,	
U	Attribution: D-Kuru, CC BY-SA 3.0 AT https://creativecomm	
	ons.org/licenses/by-sa/3.0/at/deed.en>, via Wikimedia Commons,	
	Page URL: https://commons.wikimedia.org/wiki/File:Light_dis	
	persion_of_a_mercury-vapor_lamp_with_a_flint_glass_prism_I	
	PNr%C2%B00125.jpg	89
Fig. 7.7	Fourier analysis of a periodic function, Attribution: Graph	0,
118. 7.7	images are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	90
Fig. 7.8	Inner ear details, in particular observe the cochlea, which looks	70
116. 7.0	like a spiral or snail, Attribution: BruceBlaus. When using this	
	image in external sources it can be cited as: Blausen.com staff	
	(2014). "Medical gallery of Blausen Medical 2014". WikiJournal	
	of Medicine 1 (2). https://doi.org/10.15347/wjm/2014.010. ISSN	
	2002-4436. CC BY 3.0 https://creativecommons.org/licenses/by/	
	3.0>, via Wikimedia Commons, Page URL: https://commons.wik	
	imedia.org/wiki/File:Blausen_0329_EarAnatomy_InternalEar.png	91
Ei. 7.0		91
Fig. 7.9	Approximating a periodic function with its harmonic components,	
	Attribution: Graph images are created with the Desmos Graphing	02
E' 7.10	Calculator, used with permission from Desmos Studio PBC	92
Fig. 7.10	ADSR, Attribution: CC BY-SA 3.0 https://creativecommons.	
	org/licenses/by-sa/3.0/deed.en>, via Wikimedia Commons, Page	
	URL: https://commons.wikimedia.org/wiki/File:ADSR_para	0.0
	meter.svg	93
Fig. 7.11	The ADSR envelope controls of a Korg ARP Odyssey	
	synthesizer, Attribution: Ashley Pomeroy, CC BY-SA 4.0 <	
	https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia	
	Commons, Page URL: https://commons.wikimedia.org/wiki/File:	
	Korg_ARP_Odyssey_ADSR_0113.jpg	94

xxiv List of Figures

Fig. 8.1	A beat corresponding to $w_1 = 10$ and $w_2 = 9$, Attribution:	
	Graph image was created with the Desmos Graphing Calculator, used with permission from Desmos Studio PBC	98
Fig. 9.1	An analog waveform and its digital counterpart, Attribution:	90
11g. 9.1	Graph images are created with the Desmos Graphing Calculator,	
	used with permission from Desmos Studio PBC	104
Fig. 9.2	4 versus 16 levels of resolution, both with 12 samples taken,	104
115. 7.2	Attribution: Graph images are created with the Desmos Graphing	
	Calculator, used with permission from Desmos Studio PBC	104
Fig. 9.3	Aliasing, which happens when we sample at a rates less	
	than or equal to twice the highest frequency in the signal,	
	Attribution: Graph images are created with the Desmos Graphing	
	Calculator, used with permission from Desmos Studio PBC	107
Fig. 9.4	Visual illustration of the degradation or noise that accumulates	
	in subsequent copies of analog recordings. Digital recordings are	
	always the same, Attribution: Created by the author in Google	
	slides	108
Fig. 9.5	Resolution or bit depth and sample rate, the more the merrier,	
	Attribution: Graph images are created with the Desmos Graphing	
	Calculator, used with permission from Desmos Studio PBC	108
Fig. 10.1	Stokowski and the Philadelphia Orchestra at the 2 March 1916	
	American premiere of Mahler's 8th Symphony, Attribution:	
	Public Domain in the USA, Page URL: https://commons.wik	
	imedia.org/wiki/File:Philadelphia_Orchestra_at_American_pre	
	miere_of_Mahler%27s_8th_Symphony_(1916).jpg	114
Fig. C.1	Fibonacci spiral and an approximation, Attribution: Graph	
	images are created with the Desmos Graphing Calculator, used	
	with permission from Desmos Studio PBC	124